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Abstract

Machine learning systems are widely used in our
daily lives, making fairness an important con-
cern when designing and deploying these systems.
Moreover, the data that we use to train or audit
them often contain biased labels. In this paper, we
show that not only does label bias in training data
affect model performance, but it also misrepre-
sents fairness of classifiers at test time. To tackle
this problem, we propose a framework to audit and
learn fair classifiers by using a probabilistic model
to infer the hidden fair labels and estimating the
expected fairness under this distribution. In particu-
lar, we provide (i) a “data clean-up” method which
replaces biased labels with the fair ones—which
can be used as pre-processing at train time or for
better auditing at test time—and (ii) a reweighting
method that directly estimates statistical fairness
notions with respect to the inferred fair labels. Ex-
perimental results demonstrate the effectiveness
of our proposed approach on synthetic data, with
controlled ground truth labels and their biased ver-
sions, as well as on real-world benchmark datasets.

1 INTRODUCTION

As machine learning systems are being used to assist or
make decisions in areas that affect our lives—advertising,
credit scoring, hiring, education, and even criminal risk
assessments [2, 6–8]—measuring and ensuring algorithmic
fairness have received much attention in the recent years.
This includes various definitions to quantify fairness and
algorithms to mitigate bias [6, 10, 11, 14–16, 23, 26]. In
particular, the presence of noisy or biased labels in data
may exacerbate discrimination and make bias mitigation
techniques more challenging [13, 14, 18]. For instance, a
biased classifier may incorrectly be deemed fair, and vice

versa. In many domains especially relevant for algorithmic
fairness, it may be impossible or at least highly infeasible to
observe the true target variable, and only a biased proxy may
be available. For example, risk assessment tools whose aim
is to predict re-offense would be trained with data containing
re-arrest information instead. In this paper, we show that
explicit consideration of such label bias is necessary for
fairness and propose probabilistic approaches to reliably
audit and learn fair classifiers from biased labels.

The key component of our approach is to infer the proba-
bility of hidden fair labels given the observations about the
features and biased labels. This requires efficient inference
of conditional probabilities given different evidence. We
leverage a recent fair probabilistic modeling approach [5],
which learns the bias mechanism in a way that best explains
the observed data as well as allowing tractable inference on
the learned distribution.

Our framework uses this distribution to address label bias
both at test (audit) time and train time, through data clean-
ing and reweighting. For data cleaning, we replace the poten-
tially biased labels with inferred fair labels, obtained either
by sampling from aforementioned probability distribution
or by thresholding. The clean data can then be used to train
classifiers that are accurate and fair with respect to these gen-
erated labels, as well as to evaluate given classifiers at test
time. In addition, we also propose an importance reweight-
ing approach which does not alter the dataset, but rather
incorporates the fair label probabilities as weights when
estimating performance metrics and fairness violations.

Related Work Several recent works also studied quan-
tifying and mitigating the impact of biased or noisy la-
bels, assuming group-dependent [3, 12, 24, 27] or instance-
dependent noise rates [25]. In particular, Jiang and Nachum
[17] propose to reweigh the dataset as pre-processing, with
the assumption that the biased labeling function is the one
that is closest to the fair one. On the other hand, we learn
the weights through a probabilistic modeling approach (Sec-
tion 3.1). Moreover, Wang et al. [24] and Wu et al. [25]
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derive weighted classification loss and fairness metrics to in-
corporate group- and instance-dependent noise rates, respec-
tively. Instead, our reweighting utilizes the inferred probabil-
ities of fair labels for each observed instance, which also al-
lows us to derive a pre-processing data cleaning. This in fact
subsumes the group-dependent noise setting, while relaxing
an implicit independence assumption (Appendix A.1).

2 FAIRNESS UNDER LABEL BIAS

We use uppercase letters (X) for random variables and low-
ercase letters (x) for their assignments; bold letters denote
sets of random variables (X) and assignments (x), respec-
tively. Let S denote a sensitive attribute defining the demo-
graphic group assignment, X a set of non-sensitive features,
and Y ∈{0,1} a binary label. The set of possible values for
X and S are denoted by X and S , respectively. For simplic-
ity, we assume that S = {0,1}, but our method can easily
be applied to multi-valued sensitive attributes. Moreover,
Ỹ denotes the noisy or biased version of Y that is actually
observed, and P (X, S, Ỹ , Y ) the joint distribution over all
random variables. The observed data D = {(xi, si, ỹi)}ni=1

consists of n i.i.d. samples drawn from P (X, S, Ỹ ).

Our goal is to train a classifier f : X →{0,1} to minimize a
loss function l(.) with some fairness constraint:1

minf EP [l(f(X), Y )] s.t. f is fair w.r.t. P (X, S, Y ) (1)

Among many statistical notions of fairness [6, 11, 15, 19],
we focus on the effect of label bias on equal opportunity
(EOp) and equalized odds (EO) [15]. A binary classifier f
satisfies equalized odds if the true positive rate (TPRY,s)
and false positive rate (FPRY,s) are equal across the demo-
graphic groups; i.e., for each y ∈ {0, 1}:

P (f(X)=1 | S=1, Y =y) = P (f(X)=1 | S=0, Y =y).

Equal opportunity only requires the true positive rates to
be equalized (y=1 in above equation). These notions are
loosely based on an intuition that a perfect classifier is fair,
which no longer holds in the presence of label bias: a classi-
fier that perfectly predicts biased labels is clearly not fair.

Example 2.1. Consider an example dataset shown in Fig-
ure 1a, over a single feature X , a sensitive attribute S,
fair label Y , and biased observed label Ỹ . The number
of positive and negative labels are shown for each fea-
ture assignment, and the highlighted entries indicate the
observed data {(xi, si, ỹi)}200i=1. Suppose we have a classi-
fier f(X) = 1[X = 1]. It satisfies EO w.r.t. the fair label
Y : TPRY,1 = TPRY,0 = 30/40 = 0.75. However, an audit
w.r.t. observed data would conclude that it violates EOp:
TPRỸ ,1 = 35/55 = 0.64,TPRỸ ,0 = 20/40 = 0.50. Thus,

1The classifier f may also use the sensitive attribute S in
addition to features X.

Y Ỹ

S,X #pos #neg #pos #neg

1, 1 30 40 35 35
1, 0 10 20 20 10
0, 1 30 10 20 20
0, 0 10 50 20 40

(a) Hidden (Y ) and observed label (Ỹ )

P (Y =1 |S,X, Ỹ )

S,X Ỹ =1 Ỹ =0

1, 1 0.86 0
1, 0 0.5 0
0, 1 1 0.5
0, 0 0.5 0

(b) Fair label probabilities

Figure 1: Example dataset with label bias

data containing label bias may lead to incorrect fairness
assessment of classifiers.

While we could compute the TPR and FPR of f with respect
to the true labels Y with access to the underlying distribu-
tion P (X, S, Ỹ , Y ), it is generally unavailable in practice.
More importantly, even if such distribution is given, exactly
computing the TPR and FPR corresponds to the expected
prediction task [20, 21] EP (X|s,y)[f(X)] which is known to
be NP-hard even in restricted cases such as when f is a logis-
tic regression classifier and P a naive Bayes model. Instead,
we use the fact that if we can reliably infer P (Y | x, s, ỹ),
using the data drawn from P (X, S, Ỹ ) we can estimate the
fairness violation and empirical loss as if we were sampling
from the joint distribution P (X, S, Ỹ , Y ). Based on this
intuition, we propose a data pre-processing method and an
importance reweighting approach to reliably estimate the
expected fairness violation of existing classifiers and to en-
force fairness constraints w.r.t. the hidden fair labels. For
the instance-specific probabilities P (Y | x, s, ỹ), we show
that the fair probabilistic modeling proposed by Choi et al.
[5] can infer the fair labels both accurately and efficiently.
We now describe our proposed approaches in detail.

3 INFERRING FAIR LABELS

This section describes our approach to “clean up” a given
dataset by replacing the biased labels with a probabilistically
inferred hidden fair label for each data sample. The clean
dataset can then be used by downstream (fair) classification
algorithms or evaluation of learned classifiers.

Suppose we had access to the conditional distribution
P (Y | X, S, Ỹ ). Then we can augment our data to obtain
{(xi, si, ỹi, yi)}ni=1 by sampling yi ∼ P (Y | xi, si, ỹi).
This augmented dataset can then be used for fairness assess-
ment of existing classifiers, as it would produce unbiased
estimates of true positive and false positive rates w.r.t. the
underlying distribution P (X, S, Y ). Moreover, this method
can be seen as a pre-processing step: the clean data can be
passed to any fair classifier learning algorithm to enforce
fairness constraints with respect to the inferred clean labels.

Note that due to sampling, above clean-up algorithm is in-
herently randomized, and thus multiple runs could output
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Table 1: Accuracy of inferring fair labels

Synth10 Synth20 Synth30 COMPAS Adult

0.9031 0.9395 0.9413 0.9787 0.9729

different datasets. We also provide a simpler deterministic
alternative where we threshold the instance-specific fair la-
bel probability. That is, each example (xi, si, ỹi) is assigned
a new label yi = 1[P (Y = 1 | xi, si, ỹi) ≥ T ] for some
threshold T (0.5 by default). While this no longer guaran-
tees unbiased estimates of TPR and FPR, we empirically
demonstrate its efficacy in retrieving the ground truth labels
with high accuracy as well as in downstream fair learning.

3.1 LEARNING THE FAIR LABEL DISTRIBUTION

While our proposed data cleaning and importance reweight-
ing (Section 4) do not constrain how the fair label probability
P (Y | X, S, Ỹ ) is obtained, our implementation utilizes the
probabilistic modeling framework FAIRPC [5] which we
briefly describe here. FAIRPC faithfully learns a joint dis-
tribution P (X, S, Ỹ , Y ) to best explain the observed data,
with the assumption that Y is a fair label that is independent
of the sensitive attribute and that Ỹ is a biased version of it.
In particular, the distribution is factorized as the following:

P (X, S, Ỹ , Y ) = P (X | S, Y )P (Ỹ | S, Y )P (S)P (Y ).

The distribution is represented by a probabilistic circuit, a
type of probabilistic model that supports tractable infer-
ence [4]. In particular, we can compute the conditional
probability P (Y = 1 | x, s, ỹ) in linear time in the size
of the circuit for any arbitrary evidence x, s, ỹ. Moreover,
this computation can easily be performed in parallel so that
we can quickly obtain the corresponding probability for all
observed data samples.

To see how effective FAIRPC is in inferring the fair label
given the observed data x, s, ỹ, we evaluate the accuracy of
probabilistic classifier P (Y | x, s, ỹ) ≥ 0.5 on synthetic
and real-world benchmark datasets (Table 1). We refer to
Section 5 for details about the datasets. On synthetic datasets
with |X| = 10, 20, 30 where we can generate ground truth
labels and the biased versions, FAIRPC trained on the bi-
ased observed data can predict the ground truth labels with
test-set accuracy ranging from 90% to 94%. Moreover, in
real-world datasets where hidden fair labels are not available,
we compare inferred fair labels with observed labels (which
may be biased) in order to evaluate whether inferred fair la-
bels are still reasonably close to the given labels. We answer
this in the affirmative, with the test-set accuracy of 98%
and 97% for COMPAS and Adult datasets, respectively.
Therefore, we can confidently use these inferred labels for
downstream fair ML methods.

4 ESTIMATING AND ENFORCING
EXPECTED GROUP FAIRNESS

The data cleaning approach has a strong benefit that it can be
used with various fair classification learning or fairness au-
diting algorithms without any change to those downstream
algorithms. However, it modifies the labels in the dataset,
which may prohibit its use in some real-world applications
due to data protection regulations.

Moreover, even though our data cleaning algorithm uti-
lizes the conditional distribution P (Y | X, S, Ỹ ), we either
threshold or sample from it, and the subsequent audit or
learning methods will only see the binarized labels. Instead,
we also introduce estimators (ESTIR) for the expected fair-
ness violations (EO or EOp) and accuracy, by reweighting
each sample with importance weights derived using the fair
label probabilities.

Proposition 1. Consider a joint distribution P (X, S, Ỹ , Y )
and i.i.d. data {(xi, si, ỹi)}ni=1 drawn from its marginal dis-
tribution P (X, S, Ỹ ). For any function g(X, S, Ỹ , Y ), the
following is an unbiased estimate of EP [g]:

1

n

n∑
i=1

∑
y∈{0,1}

g(xi, si, ỹi, y)P (y | xi, si, ỹi).

For instance, the expected accuracy of a classifier f w.r.t. the
hidden fair label Y can be estimated by setting g(x, y) =
1[f(x) = y]. For the expected fairness violation, we need
to estimate the true positive and false positive rates which in-
volve computing conditional expectations for each S and Y .

Proposition 2. Consider a joint distribution P (X, S, Ỹ , Y )
and i.i.d. data {(xi, si, ỹi)}ni=1 drawn from its marginal dis-
tribution P (X, S, Ỹ ). For a classifier f : X → {0, 1},
s ∈ S, and y ∈ {0, 1}, the following is an unbiased esti-
mate of P (f(X) = 1 | S = s, Y = y):

1

ns · P (y | s)
∑

i:si=s

f(xi)P (y | xi, ỹi, si) (2)

where ns = |{i : si = s}| is the number of samples whose
sensitive attribute has the value s.

The detailed proofs of above propositions can be found
in Appendix A. Briefly, they are based on viewing the ob-
served data as samples from a distribution Q(X, S, Ỹ , Y ) =

P (X, S, Ỹ )Q(Y ) in which Y is independent of other vari-
ables and can be completely random. Then we obtain esti-
mates w.r.t. the target distribution P (.) by using the impor-
tance weights P (x, s, ỹ, y)/Q(x, s, ỹ, y).

Note that we can also derive a fair learning algorithm by
optimizing the expected accuracy subject to the fairness con-
straints using the above estimators. We leave this as future
work and in this paper focus on evaluating fair classification
through data cleaning.
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5 EXPERIMENTAL RESULTS

This section investigates the effectiveness of our framework
for auditing and learning fair classifiers (complete results
in Appendix B). We evaluate our methods and baselines on
COMPAS [22] for recidivism prediction where the sensitive
attribute is ethnicity, Adult [9] for income prediction with
sex as sensitive attribute, and synthetic data [5] where we
can generate ground truth labels and observed labels with
group-dependent bias. We compare against three baselines:
(1) logistic regression trained on the observed data (LROBS),
(2) REDUCT. [1] which solves fair classification with equal-
ized odds constraint by reducing it to cost-sensitive clas-
sification problems, and (3) REWGT. [17] which corrects
bias by reweighting data points. On synthetic data, we addi-
tionally train logistic regression using ground truth labels
(LRGT). Each reported result is the average over 10 runs.
All experiments were run on an Intel(R) Xeon(R) E5-2680
v4 CPU (2.4 GHz) with 128GB RAM.

Auditing under Label Bias Here we empirically demon-
strate that fairness violation estimates using observed labels
are not reliable and evaluate our proposed auditing meth-
ods. Table 2 summarizes the results on a synthetic dataset
with |X|=10. Comparing EOp and EO estimates using the
ground truth labels (TRUE) to those using observed labels
(ESTObs), we see that across all baselines ESTObs underes-
timates fairness violations. This includes fair classification
methods REDUCT. and REWGT. which still exhibit dis-
crepancy when audited. On the other hand, our proposed
approaches based on data cleaning (ESTFair and ESTFair≥)
and importance reweighting (ESTIR) follow the ground truth
evaluation more closely, validating the utility of inferred
fair labels as a reliable substitute for ground truth labels in
scenarios where the latter is not available. ESTFairwhich is
the unbiased estimate of fair label is closest to ground truth.
Both ESTFair≥and ESTIRresult in similar evaluations, thus
affirming our assertion that we can estimate true fairness
violations of a classifier without replacing the actual labels.

Learning Fair Classifier Let us now turn our attention
to learning fair classifiers from biased labels. We train the
three baselines on pre-processed data by our threshold-based
cleaning method. We compare them against the baselines
trained directly on observed data; we evaluate using ground
truth labels on synthetic dataset, and provide evaluations
using both observed labels and importance reweighting on
real-world datasets where ground truth is not available. Ta-
ble 3 summarizes the results.

Impact of label bias during training is best quantified by
comparing LRObs and LRFair, where we see significant im-
provement in fairness without loss of accuracy across all
datasets. In fact, we observe that our pre-processing step
results in overall improvement of fairness compared to the
baseline counterparts. Moreover, we also see a significant

Table 2: Evaluation of auditing methods on synthetic dataset

Eval LRGT LRObs REDUCT. REWGT.

Acc.

TRUE 0.7208 0.6055 0.6620 0.6022
ESTObs 0.6133 0.6416 0.6351 0.6243
ESTFair 0.7112 0.6094 0.6638 0.6100
ESTFair≥ 0.7305 0.6222 0.6807 0.6211
ESTIR 0.7098 0.6093 0.6637 0.6100

EOp

TRUE 0.1968 0.4937 0.0942 0.0520
ESTObs 0.0408 0.4447 0.0904 0.0196
ESTFair 0.1743 0.4903 0.0933 0.0467
ESTFair≥ 0.1949 0.4960 0.1036 0.0546
ESTIR 0.1698 0.4876 0.0786 0.0430

EO

TRUE 0.2097 0.5073 0.1448 0.0553
ESTObs 0.1260 0.4746 0.1208 0.0312
ESTFair 0.1925 0.5095 0.1453 0.0542
ESTFair≥ 0.2206 0.5088 0.1552 0.0581
ESTIR 0.1898 0.5060 0.1455 0.0660

Table 3: Evaluation of fair learning methods

Synth10 COMPAS Adult

Method TRUE ESTObs ESTIR ESTObs ESTIR

A
cc

ur
ac

y
LROBS 0.6055 0.8822 0.8897 0.8364 0.8082
REDUCT. 0.6620 0.8805 0.8764 0.8327 0.8202
REWGT. 0.6022 0.8831 0.8921 0.8317 0.8250

LRFair≥ 0.7204 0.8835 0.9012 0.8277 0.8230
REDUCT.Fair≥ 0.7085 0.8830 0.9009 0.8346 0.8204
REWGT.Fair≥ 0.7167 0.8833 0.9011 0.8331 0.8233

E
O

LROBS 0.5073 0.2474 0.2513 0.2475 0.4636
REDUCT. 0.1448 0.2981 0.2990 0.0953 0.1921
REWGT. 0.0553 0.1632 0.1715 0.0599 0.2288

LRFair≥ 0.2341 0.1500 0.1569 0.0797 0.2210
REDUCT.Fair≥ 0.0578 0.1264 0.1349 0.0525 0.2406
REWGT.Fair≥ 0.0930 0.1380 0.1447 0.0611 0.2546

increase in ground-truth accuracy on synthetic data, sug-
gesting that our data cleaning indeed provide labels that are
close to ground truth.

6 CONCLUSION

This paper studied how label bias can make fairness evalu-
ation challenging and demonstrated the need to explicitly
correct such bias. We first proposed a data cleaning method
that infers the hidden fair label for each data instance. This
can be used to estimate the expected fairness violations and
to learn fair classifiers using the clean labels rather than
the biased ones. As this approach replaces the labels in
data which may be problematic in certain domains, we also
provide an importance reweighting approach that directly
estimates the expected fairness w.r.t. the hidden labels with-
out changing the data. Empirical evaluation showed that we
are able to accurately estimate fairness metrics and better
enforce them with respect to the hidden true labels.
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A DETAILED PROOFS

A.1 INSTANCE-SPECIFIC FAIR LABEL
PROBABILITY VS. NOISE RATE

As discussed in Section 1, existing fair ML methods ad-
dressing label bias often assume or estimate noise rates.
For example, group-dependent noise rates can be charac-
terized as P (Ỹ | S, Y ), whereas instance-dependent rates
additionally condition on X [24, 25]. Instead, we focus on
the instance-specific fair label probability P (Y | X, S, Ỹ )
which naturally led to a data cleaning method by simply
inferring the fair label for each instance.

Moreover, it is crucial that we do not assume that noise rates
are known, as it would be highly unlikely in real-world ap-
plications even for group-based rates, and especially so for
the more finer-grained instance-based noise. Nevertheless,
we can still provide the option to incorporate group-specific
noise rates should they be available as background knowl-
edge, as we have framed the problem of deriving fair labels
as that of learning an interpretable probabilistic model with
a latent variable.

More specifically, FAIRPC factorizes the joint distribu-
tion into smaller ones including the group-dependent noise
P (Ỹ | S, Y ):

P (X, S, Ỹ , Y ) = P (X | S, Y )P (Ỹ | S, Y )P (S)P (Y ).

Thus, we could fix this distribution during the training of
FAIRPC and learn the rest to best fit the observed data.
The remaining algorithm stays the same, in which we use
tractable conditional inference to compute P (Y | X, S, Ỹ )
for each instance.

This is in contrast to the surrogate fairness metric derived by
Wang et al. [24], in which the empirical TPR and FPR are
weighted by group-dependent noise rates to obtain estimates
w.r.t. clean labels. For such group-based reweighting, an
implicit independence assumption X ⊥ Y | S, Ỹ must
hold. Our approach does not make such assumption and
instead leaves the door open for additional constraints while
learning the fair distribution for specialized use cases.

Let us now prove that a group-based reweighting of true
positive and false positive rates requires the independence
assumption X ⊥ Y | S, Ỹ to hold. Specifically, assuming
some group-based noise rates P (Ỹ | S, Y ), Wang et al. [24]
show that the true positive rate of a classifier f(X) with
respect to true label Y can be written in terms of TPR and

FPR estimates w.r.t. the biased labels as follows:

P (f(X)=1 | S=s, Y =1)

= P (f(X)=1 | S=s, Y =1, Ỹ =1)P (Ỹ =1 | S=s, Y =1)

+ P (f(X)=1 | S=s, Y =1, Ỹ =0)P (Ỹ =0 | S=s, Y =1)

?
= P (f(X)=1 | S=s, Ỹ =1)P (Ỹ =1 | S=s, Y =1)

+ P (f(X)=1 | S=s, Ỹ =0)P (Ỹ =0 | S=s, Y =1).

Note that Equation 3 can be computed using the empirical
TPR and FPR and the group-based noise rates. A similar
derivation can be performed for true FPR by considering
Y = 0 instead of Y = 1.

However, for Equation 3 to hold, we must have that

P (f(X)=1 | S=s, Y =y, Ỹ = ỹ)

= P (f(X)=1 | S=s, Ỹ = ỹ)

for any assignment s, y, ỹ and arbitrary classifier f(.). For
instance, suppose f(x) = 1 for a fixed assignment x and
f(x′) = 0 for all x′ ̸= x. Then we need

P (X=x | S=s, Y =y, Ỹ = ỹ)

= P (X=x | S=s, Ỹ = ỹ)

for arbitrary x, s, y, ỹ. This implies X ⊥ Y | S, Ỹ , which
may not hold in general. We remark that above result does
not depend on which label was used to train f . That is, even
if f was trained using Ỹ , additional information about Y
could alter the distribution of features.

A.2 PROOFS OF PROPOSITIONS

This section provides detailed proofs of unbiasedness of our
importance reweighted estimates.

At a high level, we construct a hypothetical distribution Q
and show that our estimates correspond to using samples
from Q with importance weights P/Q. We first define the
distribution Q as the following:

Q(X=x, S=s, Ỹ = ỹ, Y =y)

=
1

2
P (X=x, S=s, Ỹ = ỹ), .

In particular, Q agrees with P in the marginal distribu-
tion of the observed data, and assumes that Y is uni-
formly distributed and independent of all other variables:
Q(y | x, s, ỹ) = Q(y) = 1/2. Then for any assignment
x, s, ỹ, y, we have the following:

P (x, s, ỹ, y)

Q(x, s, ỹ, y)
=

P (y | x, s, ỹ)P (x, s, ỹ)

Q(y | x, s, ỹ)Q(x, s, ỹ)
=

P (y | x, s, ỹ)
1/2

.

(3)

We are now ready to prove the propositions.
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Proposition 1. Consider a joint distribution P (X, S, Ỹ , Y )
and i.i.d. data {(xi, si, ỹi)}ni=1 drawn from its marginal dis-
tribution P (X, S, Ỹ ). For any function g(X, S, Ỹ , Y ), the
following is an unbiased estimate of EP [g]:

1

n

n∑
i=1

∑
y∈{0,1}

g(xi, si, ỹi, y)P (y | xi, si, ỹi).

Proof. The dataset {(xi, si, ỹi)}ni=1 consists of i.i.d. sam-
ples from P (X, S, Ỹ ) which is equivalent to Q(X, S, Ỹ )
by our construction of Q. Moreover, we can augment this
dataset to {(xi, si, ỹi, yi)}ni=1 by sampling yi uniformly at
random. Then the expression in above proposition is sim-
ply a Monte Carlo estimator from Q(X, S, Ỹ , Y ) whose
expectation can be written as follows:

EQ(X,S,Ỹ ,Y )

 1

n

n∑
i=1

∑
y∈{0,1}

g(xi, si, ỹi, y)P (y | xi, si, ỹi)


=

1

n

n∑
i=1

EQ(X,S,Ỹ ,Y )

 ∑
y∈{0,1}

g(x, s, ỹ, y)P (y | x, s, ỹ)


= EQ(X,S,Ỹ ,Y )

 ∑
y∈{0,1}

g(x, s, ỹ, y)P (y | x, s, ỹ)

 .

(4)

Considering the case y = 0 for y ∈ {0, 1} in above summa-
tion, we have

EQ(X,S,Ỹ ,Y ) [g(x, s, ỹ, Y = 0)P (Y = 0 | x, s, ỹ)]

= EQ(X,S,Ỹ ,Y )

[
g(x, s, ỹ, Y = 0) · P (x, s, ỹ, Y = 0)

2Q(x, s, ỹ, Y = 0)

]
(5)

=
1

2

∑
x,s,ỹ,y

g(x, s, ỹ, Y =0)
P (x, s, ỹ, Y =0)

Q(x, s, ỹ, Y =0)
Q(x, s, ỹ, y)

(6)

=
1

2

∑
x,s,ỹ,y

g(x, s, ỹ, Y = 0)P (x, s, ỹ, Y = 0) (7)

=
1

2

∑
y∈{0,1}

∑
x,s,ỹ

g(x, s, ỹ, Y = 0)P (x, s, ỹ, Y = 0)

=
∑
x,s,ỹ

g(x, s, ỹ, Y = 0)P (x, s, ỹ, Y = 0). (8)

Note that Equation 5 follows from the importance weight de-
rived in Equation 3, and Equation 7 follows from Equation 6
because Q(x, s, ỹ, Y = 0) = Q(x, s, ỹ, Y = 1). Similarly,
we have that

EQ(X,S,Ỹ ,Y ) [g(x, s, ỹ, Y =1)P (Y =1 | x, s, ỹ)] (9)

=
∑
x,s,ỹ

g(x, s, ỹ, Y =1)P (x, s, ỹ, Y =1). (10)

Combining Equations 8 and 10 with Equation 4, we con-
clude the following:

EQ(X,S,Ỹ ,Y )

 ∑
y∈{0,1}

g(x, s, ỹ, y)P (y | x, s, ỹ)


=

∑
x,s,ỹ

g(x, s, ỹ, Y =0)P (x, s, ỹ, Y =0)

+
∑
x,s,ỹ

g(x, s, ỹ, Y =1)P (x, s, ỹ, Y =1)

=
∑

x,s,ỹ,y

g(x, s, ỹ, y)P (x, s, ỹ, y) = EP [g(X, S, Ỹ , Y )].

Proposition 2. Consider a joint distribution P (X, S, Ỹ , Y )
and i.i.d. data {(xi, si, ỹi)}ni=1 drawn from its marginal dis-
tribution P (X, S, Ỹ ). For a classifier f : X → {0, 1},
s ∈ S, and y ∈ {0, 1}, the following is an unbiased esti-
mate of P (f(X) = 1 | S = s, Y = y):

1

ns · P (y | s)
∑

i:si=s

f(xi)P (y | xi, ỹi, si) (11)

where ns = |{i : si = s}| is the number of samples whose
sensitive attribute has the value s.

Proof. Restricting our dataset to those in which si = s, we
effectively have i.i.d. samples from Q(X, Ỹ | S = s) which
is equivalent to Q(X, Ỹ | S = s, Y = y) by construction
(Y is independent of all other variables according to Q).

Let us first derive the importance weight given our tar-
get distribution P (X, Ỹ | s, y) and proposal distribution
Q(X, Ỹ | s, y):

P (x, ỹ | s, y)
Q(x, ỹ | s, y)

=
P (x, s, ỹ, y)Q(s, y)

Q(x, s, ỹ, y)P (s, y)

=
P (y | x, s, ỹ)

1/2

1/2 · P (s)

P (s, y)
=

P (y | x, s, ỹ)
P (y | s)

Here, the second equality holds due to Equation 3 and
Q(SY ) = Q(S)Q(Y ) = 1

2P (S).

8



We can then derive the expectation of our estimator:

EQ(X,Ỹ |S=s,Y=y)

[
1

nsP (y | s)
∑

i:si=s

f(xi)P (y | xi, ỹi, s)

]

=
1

nsP (y | s)
∑

i:si=s

EQ(X,Ỹ |S=s,Y=y) [f(x)P (y | x, ỹ, s)]

=
1

P (y | s)
EQ(X,Ỹ |S=s,Y=y) [f(x)P (y | x, ỹ, s)]

=
1

P (y | s)
∑
x,ỹ

f(x)P (y | x, ỹ, s)Q(x, ỹ | s, y)

=
1

P (y | s)
∑
x,ỹ

f(x)
P (x, ỹ | s, y)P (y | s)

Q(x, ỹ | s, y)
Q(x, ỹ | s, y)

=
∑
x,ỹ

f(x)P (x, ỹ | s, y)

=
∑
x,ỹ

1[f(x) = 1]P (x, ỹ | s, y) = P (f(x) = 1 | s, y).

B ADDITIONAL EXPERIMENTS

Auditing under Label Bias Section 5 presented empir-
ical evaluation of auditing methods on synthetic dataset
with |X| = 10. We additionally evaluate them on synthetic
dataset with |X| = 20 and |X| = 30 and also provide
standard deviation across 10 runs; results are shown in Ta-
bles 4–6. Again, audits are done using ground truth labels
(TRUE), observed biased labels (ESTObs), sampled fair la-
bels (ESTFair), thresholded fair labels (ESTFair≥), and impor-
tance reweighting (ESTIR). For ESTFair, we sample 100 test
label set across 10 folds and take average performance for
evaluation metrics.

Tables 5 and 6 show reliability of using ESTFair or ESTFair≥
for fairness audits in larger datasets. ESTObs continues to un-
derestimate fairness violations. Overall, we see reasonably
low standard deviation in all our evaluation metrics.

We also provide the complete set of results for evaluation
of auditing methods on real-world benchmark datasets in
Table 7.

Learning Fair Classifier We provide the complete set
of results for the evaluation of fair learning methods sum-
marized in Table 3. In particular, we additionally include
evaluation on synthetic datasets with |X| = 20, 30 (Table 8)
and an additional evaluation technique (ESTFair, ESTFair≥)
on the real-world benchmarks (Table 9). Methodology for
generating evaluation sets from fair label distribution is
same as previously described in B.

Similar trends in accuracy-fairness trade offs can be ob-
served. While fairness violations differ depending on eval-
uation method, we remark that estimates using ESTFair are

theoretically unbiased with respect to the underlying distri-
bution (see Section 3).
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Table 4: Overview of auditing methods on synthetic dataset with |X| = 10 with SD.

Metric Eval LRGT LRObs REDUCT. REWGT.

Accuracy (↑)

TRUE 0.7208± 0.0141 0.6055± 0.0162 0.6620± 0.0174 0.6022± 0.0139
ESTObs 0.6133± 0.0172 0.6416± 0.0144 0.6351± 0.0158 0.6243± 0.0175
ESTFair 0.7112± 0.0203 0.6094± 0.0163 0.6638± 0.0217 0.6100± 0.0161
ESTFair≥ 0.7305± 0.0183 0.6222± 0.0167 0.6807± 0.0214 0.6211± 0.0169
ESTIR 0.7098± 0.0191 0.6093± 0.0144 0.6637± 0.0200 0.6100± 0.0134

EOp (↓)

TRUE 0.1968± 0.0504 0.4937± 0.0474 0.0942± 0.0753 0.0520± 0.0207
ESTObs 0.0408± 0.0285 0.4447± 0.0404 0.0904± 0.0516 0.0196± 0.0218
ESTFair 0.1743± 0.0465 0.4903± 0.0458 0.0933± 0.0713 0.0467± 0.0270
ESTFair≥ 0.1949± 0.0510 0.4960± 0.0448 0.1036± 0.0774 0.0546± 0.0300
ESTIR 0.1698± 0.0506 0.4876± 0.0530 0.0786± 0.1023 0.0430± 0.0521

EO (↓)

TRUE 0.2097± 0.0350 0.5073± 0.0364 0.1448± 0.1087 0.0553± 0.0188
ESTObs 0.1260± 0.0456 0.4746± 0.0334 0.1208± 0.0937 0.0312± 0.0193
ESTFair 0.1925± 0.0426 0.5095± 0.0383 0.1453± 0.1056 0.0542± 0.0238
ESTFair≥ 0.2206± 0.0430 0.5088± 0.0360 0.1552± 0.1120 0.0581± 0.0267
ESTIR 0.1898± 0.0444 0.5060± 0.0356 0.1455± 0.1118 0.0660± 0.0291

Table 5: Overview of auditing methods on synthetic dataset with |X| = 20.

Metric Eval LRGT LRObs REDUCT. REWGT.

Accuracy (↑)

TRUE 0.7977± 0.0132 0.7219± 0.0189 0.7593± 0.0169 0.7088± 0.0149
ESTObs 0.6669± 0.0180 0.6849± 0.0173 0.6675± 0.0146 0.6630± 0.0134
ESTFair 0.7900± 0.0141 0.7234± 0.0170 0.7580± 0.0131 0.7118± 0.0122
ESTFair≥ 0.7992± 0.0159 0.7302± 0.0191 0.7650± 0.0123 0.7175± 0.0131
ESTIR 0.7889± 0.0139 0.7232± 0.0168 0.7577± 0.0116 0.7112± 0.0112

EOp (↓)

TRUE 0.1069± 0.0540 0.3148± 0.0485 0.0837± 0.0291 0.1064± 0.0229
ESTObs 0.0419± 0.0483 0.2476± 0.0570 0.0340± 0.0250 0.0204± 0.0197
ESTFair 0.0854± 0.0436 0.3078± 0.0456 0.0730± 0.0312 0.0959± 0.0260
ESTFair≥ 0.0939± 0.0425 0.3082± 0.0485 0.0783± 0.0306 0.1017± 0.0235
ESTIR 0.0935± 0.0415 0.3152± 0.0419 0.0815± 0.0447 0.1050± 0.0399

EO (↓)

TRUE 0.1256± 0.0380 0.4080± 0.0314 0.0895± 0.0317 0.1064± 0.0229
ESTObs 0.0881± 0.0437 0.3716± 0.0454 0.0658± 0.0370 0.0575± 0.0293
ESTFair 0.1056± 0.0325 0.4139± 0.0372 0.0901± 0.0279 0.0968± 0.0258
ESTFair≥ 0.1157± 0.0286 0.4096± 0.0407 0.0870± 0.0291 0.1022± 0.0234
ESTIR 0.1068± 0.0374 0.4130± 0.0461 0.1018± 0.0269 0.1089± 0.0354

Table 6: Overview of auditing methods on synthetic dataset with |X| = 30.

Metric Eval LRGT LRObs REDUCT. REWGT.

Accuracy (↑)

TRUE 0.8134± 0.0116 0.7189± 0.0183 0.7578± 0.0161 0.6995± 0.0161
ESTObs 0.6726± 0.0123 0.6969± 0.0124 0.6824± 0.0146 0.6603± 0.0066
ESTFair 0.8142± 0.0095 0.7186± 0.0172 0.7604± 0.0163 0.6993± 0.0164
ESTFair≥ 0.8275± 0.0097 0.7262± 0.0190 0.7701± 0.0162 0.7052± 0.0199
ESTIR .8154± 0.0076 0.7180± 0.0162 0.7604± 0.0152 0.6988± 0.0155

EOp (↓)

TRUE 0.1276± 0.0456 0.3119± 0.0468 0.0946± 0.0532 0.0943± 0.0228
ESTObs 0.0523± 0.0494 0.2448± 0.0573 0.0674± 0.0292 0.0365± 0.0262
ESTFair 0.1306± 0.0416 0.3205± 0.0464 0.0988± 0.0467 0.1005± 0.0247
ESTFair≥ 0.1415± 0.0407 0.3208± 0.0506 0.1040± 0.0515 0.1037± 0.0261
ESTIR 0.1273± 0.0890 0.3176± 0.0920 0.0962± 0.1048 0.0975± 0.0945

EO (↓)

TRUE 0.1492± 0.0265 0.4693± 0.0438 0.1246± 0.0751 0.0943± 0.0228
ESTObs 0.0934± 0.0456 0.4293± 0.0487 0.0877± 0.0392 0.0473± 0.0332
ESTFair 0.1463± 0.0245 0.4753± 0.0433 0.1247± 0.0677 0.1005± 0.0247
ESTFair≥ 0.1584± 0.0227 0.4692± 0.0442 0.1259± 0.0676 0.1038± 0.0261
ESTIR 0.1501± 0.0624 0.4814± 0.0422 0.1521± 0.0763 0.1163± 0.0684
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Table 7: Overview of auditing methods on real-world datasets

Dataset Metric Eval LRObs REDUCT. REWGT.

COMPAS

Accuracy (↑)

ESTObs 0.8822± 0.0044 0.8805± 0.0038 0.8831± 0.0042
ESTFair 0.8902± 0.0031 0.8769± 0.0108 0.8926± 0.0044
ESTFair≥ 0.8941± 0.0032 0.8782± 0.0145 0.8955± 0.0042
ESTIR 0.8897± 0.0030 0.8764± 0.0108 0.8921± 0.0042

EOp (↓)

ESTObs 0.0094± 0.0065 0.0192± 0.0170 0.0325± 0.0244
ESTFair 0.0486± 0.0063 0.0364± 0.0125 0.0711± 0.0225
ESTFair≥ 0.0641± 0.0037 0.0439± 0.0145 0.0880± 0.0249
ESTIR 0.0494± 0.0162 0.0371± 0.0215 0.0719± 0.0303

EO (↓)

ESTObs 0.2474± 0.0471 0.2981± 0.0800 0.1632± 0.0951
ESTFair 0.2543± 0.0372 0.3060± 0.0828 0.1758± 0.0880
ESTFair≥ 0.2844± 0.0455 0.3201± 0.0974 0.1962± 0.0984
ESTIR 0.2513± 0.0394 0.2990± 0.1005 0.1715± 0.0832

Adult

Accuracy (↑)

ESTObs 0.8364± 0.0070 0.8327± 0.0081 0.8317± 0.0075
ESTFair 0.8083± 0.0077 0.8203± 0.0060 0.8253± 0.0089
ESTFair≥ 0.8230± 0.0068 0.8350± 0.0059 0.8405± 0.0079
ESTIR 0.8082± 0.0074 0.8202± 0.0052 0.8250± 0.0086

EOp (↓)

ESTObs 0.2475± 0.0631 0.0952± 0.0479 0.0542± 0.0229
ESTFair 0.3904± 0.0388 0.1021± 0.0806 0.1206± 0.0412
ESTFair≥ 0.3128± 0.0492 0.1013± 0.0487 0.0530± 0.0246
ESTIR 0.4636± 0.0392 0.1921± 0.0730 0.2288± 0.0381

EO (↓)

ESTObs 0.2475± 0.0631 0.0953± 0.0477 0.0599± 0.0161
ESTFair 0.3904± 0.0388 0.1144± 0.0685 0.1247± 0.0372
ESTFair≥ 0.3128± 0.0493 0.1079± 0.0392 0.0949± 0.0102
ESTIR 0.4636± 0.0392 0.1921± 0.0730 0.2288± 0.0381

Table 8: Evaluation of fair learning methods on synthetic datasets with |X| = 10, 20, 30

Synth10 Synth20 Synth30

Metric Method TRUE TRUE TRUE

Accuracy (↑)

LROBS 0.6055± 0.0163 0.7219± 0.0189 0.7189± 0.0183
REDUCT. 0.6620± 0.0173 0.7593± 0.0169 0.7578± 0.0161
REWGT. 0.6022± 0.0139 0.7088± 0.0149 0.6995± 0.0161

LRFair≥ 0.7204± 0.0116 0.7978± 0.0150 0.8137± 0.0128
REDUCT.Fair≥ 0.7085± 0.0151 0.7931± 0.0122 0.8087± 0.0120
REWGT.Fair≥ 0.7167± 0.0181 0.7943± 0.0122 0.8093± 0.0100

EO (↓)

LROBS 0.5073± 0.0364 0.4080± 0.0314 0.4693± 0.0438
REDUCT. 0.1448± 0.1087 0.0895± 0.0317 0.1246± 0.0751
REWGT. 0.0553± 0.0188 0.1064± 0.0229 0.0943± 0.0228

LRFair≥ 0.2341± 0.0430 0.1356± 0.0353 0.1492± 0.0275
REDUCT.Fair≥ 0.0578± 0.0373 0.0552± 0.0196 0.0639± 0.0261
REWGT.Fair≥ 0.0930± 0.0345 0.0627± 0.0312 0.0576± 0.0295
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Table 9: Evaluation of fair learning methods on real-world datasets

Dataset Metric Method ESTObs ESTFair ESTFair≥ ESTIR

COMPAS

Accuracy (↑)

LROBS 0.8822± 0.0044 0.8902± 0.0031 0.8941± 0.0032 0.8897± 0.0030
REDUCT. 0.8805± 0.0038 0.8769± 0.0108 0.8782± 0.0145 0.8764± 0.0108
REWGT. 0.8831± 0.0042 0.8926± 0.0044 0.8955± 0.0042 0.8921± 0.0042

LRFair≥ 0.8835± 0.0033 0.9014± 0.0031 0.9048± 0.0024 0.9012± 0.0027
REDUCT.Fair≥ 0.8830± 0.0038 0.9010± 0.0024 0.9041± 0.0020 0.9009± 0.0022
REWGT.Fair≥ 0.8833± 0.0020 0.9013± 0.0030 0.9046± 0.0028 0.9011± 0.0027

EO (↓)

LROBS 0.2474± 0.0471 0.2543± 0.0372 0.2844± 0.0455 0.2513± 0.0394
REDUCT. 0.2981± 0.0800 0.3060± 0.0828 0.3201± 0.0974 0.2990± 0.1005
REWGT. 0.1962± 0.0951 0.1758± 0.0880 0.1962± 0.0984 0.1715± 0.0832

LRFair≥ 0.1500± 0.0446 0.2543± 0.0372 0.1976± 0.0024 0.1569± 0.0234
REDUCT.Fair≥ 0.1264± 0.0339 0.1363± 0.0226 0.1730± 0.0261 0.1349± 0.0202
REWGT.Fair≥ 0.1380± 0.0405 0.1474± 0.0282 0.1856± 0.0024 0.1447± 0.0183

Adult

Accuracy (↑)

LROBS 0.8364± 0.0070 0.8083± 0.0077 0.8230± 0.0068 0.8082± 0.0074
REDUCT. 0.8327± 0.0081 0.8203± 0.0060 0.8350± 0.0059 0.8202± 0.0052
REWGT. 0.8317± 0.0075 0.8253± 0.0087 0.8405± 0.0079 0.8250± 0.0086

LRFair≥ 0.8277± 0.0051 0.8234± 0.0073 0.8402± 0.0057 0.8230± 0.0069
REDUCT.Fair≥ 0.8346± 0.0060 0.8083± 0.0077 0.8353± 0.0069 0.8204± 0.0062
REWGT.Fair≥ 0.8331± 0.0075 0.8236± 0.0088 0.8388± 0.0076 0.8233± 0.0086

EO (↓)

LROBS 0.2475± 0.0631 0.3905± 0.0388 0.3128± 0.0493 0.4636± 0.0392
REDUCT. 0.0953± 0.0477 0.1144± 0.0685 0.1079± 0.0392 0.1921± 0.0730
REWGT. 0.0599± 0.0161 0.1247± 0.0372 0.0949± 0.0102 0.2288± 0.0381

LRFair≥ 0.0797± 0.0298 0.1341± 0.0355 0.1261± 0.0223 0.2210± 0.0475
REDUCT.Fair≥ 0.0525± 0.0187 0.1468± 0.0387 0.0862± 0.0197 0.2406± 0.0379
REWGT.Fair≥ 0.0611± 0.0233 0.1515± 0.0438 0.0975± 0.0109 0.2546± 0.0381

Table 10: Evaluation of inferring fair labels on synthetic and real-world datasets

Dataset |X| = 10 |X| = 20 |X| = 30 Adult COMPAS

Acc. Acc. Acc. Acc. Acc.

TRAIN 0.9002± 0.0044 0.9405± 0.0106 0.9411± 0.0028 0.9735± 0.0016 0.9790± 0.0010
VALID 0.9032± 0.0112 0.9443± 0.0078 0.9397± 0.0049 0.9736± 0.0016 0.9777± 0.0023
TEST 0.9031± 0.0082 0.9395± 0.0030 0.9413± 0.0098 0.9729± 0.0031 0.9787± 0.0027
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